Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Infect Control ; 50(8): 947-953, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000206

ABSTRACT

BACKGROUND: Ultraviolet germicidal irradiation (UVGI) technologies have emerged as a promising adjunct to manual cleaning, however, their potential to shorten cleaning times remains unexplored. METHODS: A <10-minute disinfection procedure was developed using a robotic UVGI platform. The efficacy and time to perform the UVGI procedure in a CT scan treatment room was compared with current protocols involving manual disinfection using biocides. For each intervention, environmental samples were taken at 12 locations in the room before and after disinfection on seven distinct occasions. RESULTS: The mean UVC dose at each sample location was found to be 13.01 ± 4.36 mJ/cm2, which exceeded published UVC thresholds for achieving log reductions of many common pathogens. Significant reductions in microbial burden were measured after both UVGI (P≤.001) and manual cleaning (P≤.05) conditions, with the UVGI procedure revealing the largest effect size (r = 0.603). DISCUSSION: These results support the hypothesis that automated deployments of UVGI technology can lead to germicidal performance that is comparable with, and potentially better than, current manual cleaning practices. CONCLUSIONS: Our findings provide early evidence that the incorporation of automated UVGI procedures into cleaning workflow could reduce turnaround times in radiology, and potentially other hospital settings.


Subject(s)
Radiology , Robotics , Disinfection/methods , Hospitals , Humans , Ultraviolet Rays
2.
Biomed Phys Eng Express ; 8(5)2022 08 10.
Article in English | MEDLINE | ID: covidwho-1922162

ABSTRACT

Objective.New technologies, including robots comprising germ-killing UV lamps, are increasingly being used to decontaminate hospitals and prevent the spread of COVID-19 and other superbugs. Existing approaches for modelling the irradiance field surrounding mobile UV disinfection robots are limited by their inability to capture the physics of their bespoke geometrical configurations and do not account for reflections. The goal of this research was to extend current models to address these limitations and to subsequently verify these models using empirically collected data.Approach.Two distinct parametric models were developed to describe a multi-lamp robotic UV system and adapted to incorporate the effects of irradiance amplification from the device's reflectors. The first model was derived from electromagnetic wave theory while the second was derived from conservation of energy and diffusion methods. Both models were tuned using data from empirical testing of an existing UV robot, and then validated using an independent set of measurements from the same device.Results.For each parameter, predictions made using the conservation of energy method were found to closely approximate the empirical data, offering more accurate estimates of the 3D irradiance field than the electromagnetic wave theory model.Significance.The versatility of the proposed method ensures that it can be easily adapted to different embodiments, providing a systematic way for researchers to develop accurate numerical models of custom UV robots, which may be used to inform deployment and/or to improve the accuracy of virtual simulation.


Subject(s)
COVID-19 , Robotics , Disinfection/methods , Humans , Ultraviolet Rays
3.
Healthc Technol Lett ; 9(3): 25-33, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1868028

ABSTRACT

Ultraviolet germicidal irradiation (UVGI) technologies have emerged as a promising alternative to biocides as a means of surface disinfection in hospitals and other healthcare settings. This paper reviews the methods used by researchers and clinicians in deploying and evaluating the efficacy of UVGI technology. The type of UVGI technology used, the clinical setting where the device was deployed, and the methods of environmental testing that the researchers followed are investigated. The findings suggest that clinical UVGI deployments have been growing steadily since 2010 and have increased dramatically since the start of the COVID-19 pandemic. Hardware platforms and operating procedures vary considerably between studies. Most studies measure efficacy of the technology based on the objective measurement of bacterial bioburden reduction; however, studies conducted over longer durations have examined the impact of UVGI on the reduction of healthcare associated infections (HCAIs). Future trends include increased automation and the use of UVGI technologies that are safer for use around people. Although existing evidence seems to support the efficacy of UVGI as a tool capable of reducing HCAIs, more research is needed to measure the magnitude of these effects and to establish recommended best practices.

4.
Front Robot AI ; 7: 590306, 2020.
Article in English | MEDLINE | ID: covidwho-1050579

ABSTRACT

The importance of infection control procedures in hospital radiology departments has become increasingly apparent in recent months as the impact of COVID-19 has spread across the world. Existing disinfectant procedures that rely on the manual application of chemical-based disinfectants are time consuming, resource intensive and prone to high degrees of human error. Alternative non-touch disinfection methods, such as Ultraviolet Germicidal Irradiation (UVGI), have the potential to overcome many of the limitations of existing approaches while significantly improving workflow and equipment utilization. The aim of this research was to investigate the germicidal effectiveness and the practical feasibility of using a robotic UVGI device for disinfecting surfaces in a radiology setting. We present the design of a robotic UVGI platform that can be deployed alongside human workers and can operate autonomously within cramped rooms, thereby addressing two important requirements necessary for integrating the technology within radiology settings. In one hospital, we conducted experiments in a CT and X-ray room. In a second hospital, we investigated the germicidal performance of the robot when deployed to disinfect a CT room in <15 minutes, a period which is estimated to be 2-4 times faster than current practice for disinfecting rooms after infectious (or potentially infectious) patients. Findings from both test sites show that UVGI successfully inactivated all of measurable microbial load on 22 out of 24 surfaces. On the remaining two surfaces, UVGI reduced the microbial load by 84 and 95%, respectively. The study also exposes some of the challenges of manually disinfecting radiology suites, revealing high concentrations of microbial load in hard-to-reach places. Our findings provide compelling evidence that UVGI can effectively inactivate microbes on commonly touched surfaces in radiology suites, even if they were only exposed to relatively short bursts of irradiation. Despite the short irradiation period, we demonstrated the ability to inactivate microbes with more complex cell structures and requiring higher UV inactivation energies than SARS-CoV-2, thus indicating high likelihood of effectiveness against coronavirus.

SELECTION OF CITATIONS
SEARCH DETAIL